
Validation with Code Introspection of a Virtual

Platform for Sandboxing and Security Analysis

Yves Lhuillier, Gilles Mouchard, and Franck Vedrine

CEA LIST, Software Reliability and Security Laboratory,
Palaiseau, France.

firstname.lastname@cea.fr

Abstract

Validating the safety and security of software computing systems often
involves testing code in simulators of these systems, called virtual plat-
forms. Because security breaches often come from implementation details,
such simulators must reach a high level of accuracy. However, validating
an instruction set simulator is a heavy development task involving large
test campaigns. In this paper, we propose a novel technique to automat-
ically generate and evaluate simulator tests. Using C++ polymorphism,
we developed a code introspection software library that enables automatic
test generation. By leveraging this automated approach, we were able to
develop a self-testing simulator, providing a superior level of validation
with minimal development overhead.

Keywords: virtualization, simulation, cybersecurity, validation, software
validation, instruction sets, processors, code introspection, polymorphism

1 Introduction

Software safety and security engineers face more and more complex issues when
dealing with validation of software computing systems. Due to constantly grow-
ing complexity of electronic systems and software components, the ability to
identify safety issues, security breaches and even malicious code has been chal-
lenged considerably lately.

Analyzing code and being able to observe the final behavior of the real system
is the role of virtual platforms. Virtual platforms not only allow to do software
simulation of hardware components; they also offer the ability to instrument
the simulation in order to perform a wide range of analyses. However, virtual

This work has been supported by the European Union’s Horizon 2020 RIA programme
under grant agreement No 780075; CHARIOT - Cognitive Heterogeneous Architecture for
Industrial IoT.

1

platforms, like every models, face accuracy issues that become crucial when
dealing with security. Safety issues are often related to functional, algorithmic
and system-level issues and can be dealt with coarse-grained models. On the
contrary, security issues require much more precision regarding code execution,
as security breaches are often hidden in implementation details. Furthermore,
most malware now try to detect sandboxes with so-called anti-tampering meth-
ods [12, 9], typically based on differences between emulators and real hardware.

The UNISIM-VP framework [1] was originally developed with hardware and
software validation in mind. With the fast-paced growth of safety critical sys-
tems and cyber-threats, it is nowadays increasingly used for reliability and se-
curity concerns. In this context, a UNISIM-VP ARMv7 platform is currently
used as front-end decoder for the static binary analyzer BINSEC [4]. The result-
ing ARMv7 binary code analyzer is currently being used for formal proof and
certification of a safety-critical real-time OS. It also has been used for reverse
compilation of inline assembly [11] to enable use of the Frama-C [7] static C
code analyzer. In all these purposes and more, validating the functional accu-
racy and minimizing the difference between these virtual platforms and the real
hardware is a critical concern for UNISIM-VP developers.

Most of UNISIM-VP CPU simulators (e.g. PowerPCs and ARMv7) have
already undergone massive automated test campaigns, comparing each single
instruction execution against real hardware execution with random inputs on
billions of samples. These test campaigns revealed large amount of simulator
bugs that were completely transparent to legitimate software, either because
compilers never emit these instructions or because input data combinations are
impossible in a sound execution environment. Nevertheless, a malicious software
could use these differences to apply anti-tampering strategies [2].

Though the test campaigns on UNISIM-VP were successful, they suffered
from one issue preventing them from being generalized: single instruction test
patterns were to be written by hand. Producing new tests for either new in-
struction sets (e.g. ARMv8) or extended instruction sets (e.g. x86-64) was a
heavy burden on developers.

This observation led us to develop techniques for automatic instruction test
generation and verification based on processor simulators code introspection.
Leveraging the C++ source code of these simulators, and using various tech-
niques ranging from polymorphism to template meta-programming, a special
instance of the simulator was developed to self-verify its implementation. This
paper presents how this self-verification is implemented with the following or-
ganization: first, the principles of code introspection is presented in Section 2.
Test selection, generation and verification are discussed in Section 3. Then the
experimental setup and design choices specific to the x86-64 instruction set are
discussed in Section 4. Finally, results and discussions come in Section 5.

2

2 Self-verifying simulator

2.1 Principles and Benefits

As mentioned in previous section, validating instruction set simulators accu-
racy is a critical but very costly task for developers. To speed up the process
a novel automatic test generation method is proposed. From a high-level per-
spective, simulators perform symbolic executions of instructions to extract, for
each of them, a behavioral description, as shown in the left part of Figure 1. In-
struction input accesses and output results are then processed to filter relevant
instructions to test. In a second step (see right part of Figure 1), each se-
lected instrution is packaged in a unit test executed using random combinations
of inputs. Executions from both the simulator and the underlying hardware
are compared to check for discrepancies. This assumes of course that the self-
verifying simulator runs on the same architecture than the one it models (x86-64
in this study).

Encodings scan

Decode Simulate

Analyze Te
st

s
se

le
cti

o
nbytes

Instructions

Execute

Compare

Tests generation

Behaviors

functions

JIT

outputs outputs

results

Program

Data

Architecture
Specific

Architecture
Independent

Figure 1: Architecture of the self-verifying simulator.

The test extraction using code introspection is the most original part of
the self-verifying simulator since the other steps have been used for decades
in processor simulator verification. Analyzing simulator code to generate tests
for virtual machines (VM) or real hardware has already been implemented suc-
cessfully by Fonseca et al. [6]. The authors instrumented the Bochs simula-
tor [10], to extract behavior and generate tests. We advocate that our approach,
though similar, goes one step further by encapsulating the instrumentation in
a C++ code introspection framework that can easily fit various simulators of
different brands (e.g. UNISIM-VP, Bochs) and targeting different instruction
set architectures (Intel, PowerPC and ARM). In the self-verifying simulator,
architecture-specific procedures (decode, analyze, and simulate in Figure 1) are
simple template instanciations of the C++ processor simulator under test. In
addition, the integration of all steps from code introspection to online test ver-
ification in a single program provides simulator developers with a great tool to
improve the simulator accuracy (through quick test-and-fix cycles).

3

The C++ code overloading that allows instrumentation is designed to re-
quire minimal modifications to existing instruction set simulators (ISS). The
instrumentation activation is performed at compilation time thus, with no per-
formance penalty, if deactivated. Moreover, once the overloading method is
understood, development of new simulators may benefit from this instrumen-
tation without any additional development efforts. In our case, we initially
patched the code of existing ARM, PowerPC and Intel simulators, whereas an
ARMv8 simulator was developed from scratch with this instrumentation-ready
method.

In this paper, we focus exclusively on the x86-64 instruction set for experi-
mental results. Nevertheless, the general operation of this C++ code overload-
ing technique is described below.

2.2 The UNISIM-VP framework and its Instruction Set
Simulators.

UNISIM-VP [1] is a collection of tools and libraries designed to help develop-
ment of precise executable models of various hardware computing components
ranging from electronic embedded systems to general-purpose computing sys-
tems. In addition to hardware component models, SystemC-related tools, de-
bugging and profiling tools, UNISIM-VP provides CPU Instruction Set Simula-
tors (ISS). These simulators are developed in C++ and some of them leverage
some source code generation using a specialized ISS compiler (GenISSLib), part
of the UNISIM-VP framework.

Basically a UNISIM-VP ISS is implemented using a conventional C++ scheme
where instructions are represented using objects where data members encode the
instructions’ variable opcodes (register operand references, constant immediate
values) and methods encode the specific operation of the instruction (e.g. execu-
tion and disassembly). All instruction classes inherit from a generic instruction
class (called Operation) that provides a virtual interface to the instruction spe-
cific methods. The virtual interface provides means to execute or textually
disassemble the instruction (see Figure 2).

2.3 Instruction sets behavioral extraction

The UNISIM-VP framework allows to add any number of methods to each in-
struction. Thus, it would have been possible to add a method to compute the
behavioral description of the instruction in the form of a well-chosen intermedi-
ate representation (IR). Nevertheless, separating the behavioral description from
the behavioral implementation (its execute method) would be error-prone as
developers would have to develop and maintain redundant codes in two different
methods. Since knowing with accuracy the behavior of the instruction is a strong
requirement of our testing methodology, we decided to extract the behavioral
description of the instruction directly from the existing execute methods.

4

UNISIM-VP Instruction Set Description

Add::execute(cpu)
{
 U32 operand1 = cpu.GetRegister(r1);
 U32 operand2 = cpu.GetRegister(r2);
 U32 result = operand1 + operand2;
 cpu.SetRegister(rd, result);
}

R1 R2 RD

10 5 0

10 5 15

R1 R2 RD

X Y Z

X Y X+Y

Concrete Symbolic

Computing instruction
output (value)

Computing instruction
function (IR)

class Operation
{
 virtual execute(cpu);
 virtual disassemble(stdout);
}

class Add : Operation
{
 virtual execute(cpu) override;
 virtual disassemble(stdout) override;

 unsigned r1; // index of source #1 register
 unsigned r2; // index of source #2 register
 unsigned rd; // index of destination register
}

Figure 2: Principles of UNISIM-VP introspection. Left is the working class
hierarchy of ISS instructions. Tables on the right depict the behavioral capture
of instructions through symbolic execution.

2.3.1 Self-extraction of arithmetic and logic expressions

In order to extract code from the compiled original execution code, we used
C++ polymorphism capabilities to divert the execute method from its main
purpose. Replacing concrete types (carrying computation values) with abstract
types (carrying variables and equations), we allowed the simulator to perform
symbolic execution of instructions. This symbolic execution incrementally ex-
tracts code expressions that are gathered at instruction output to reconstruct
the instruction’s genuine code. The right part of Figure 2 shows how things ac-
tually happen; overloaded arithmetic and logic operators process abstract data
by producing the expression tree corresponding to their outputs. Final out-
puts of instructions are extracted from machine state (register and memory) to
determine the expressions associated with the instruction operation.

2.3.2 Handling the control flow

Arithmetic and logic computations are easily tracked by abstract type variables.
Nevertheless, control flow instructions expecting a boolean condition such as
if-then-else statement can not be overloaded to handle abstract type variables.
Thus abstract boolean variables have to be “concretized” which practically goes
together with the fact that the code is only taking one if-then-else branch at a
time. Thus, we have programmed a multiple-execution scheme that keeps track
of condition concretization sequences in order to cover all possible execution
paths. Using this mechanism effectively allows to reconstruct the original code
as a binary decision diagram with arithmetic and logic equation at its nodes.

5

3 Test campaign

3.1 Unit test selection

Based on the extracted description of instruction behaviors, the unit test gen-
erator scans all possible instructions and classifies them to gather a collection
of instruction tests that are both feasible and evenly representative. A feasible
instruction test is a test that can be run natively in the test program with-
out corrupting the program state (illegal instructions or dangerous memory
accesses). This property is ensured by static analyses of the behavioral descrip-
tion. In this work, we deliberately do not address system instructions. Though
the side effect of these instructions may be safely controlled and sandboxed in
a simulator (e.g. system traps do not translate into real host machine traps),
a native execution may come with a series of issues. One way of overcoming
these issues is with native sandboxing by catching every possible hardware and
software exceptions. In [5], it is shown that with sufficient care, one can execute
any x86-64 instruction with perfect sandboxing and rollback of its side-effects.

Additionally, we need to select instruction instances that are evenly dis-
tributed according to their behaviors and computations. That means that, on
one hand, each instruction selected for test should exhibit a behavior sufficiently
distinct from other tested instructions. On another hand, all sufficiently distinct
behaviors should be represented. These properties are obtained by sorting be-
havioral equations of instructions according to a well-chosen order relation. This
relation compare recursively each node of the control flow graph (CFG). For
each CFG node, local expressions and conditional expressions are compared, in
that order according to an expression comparator. The expression comparator
recursively compares the trees of operations. Finally, if no difference appears
up to the source nodes, these source nodes are compared in a way to qualita-
tively favor good coverage of tests. Source nodes are either registers or numeric
constants. Their comparisons are detailed below.

Intel integer registers are less symmetric and exchangeable than is the case
in a pure RISC architecture. For example, RCX and RAX may seem relatively
similar, but in practice, many instructions uses RCX as a “counter register” and
cannot use any other register for that matter. Registers RSP or RBP are closely
related to stack management, without any compiler convention being involved,
since some instructions implicitly use them as stack or frame pointers (e.g.
PUSH or POP). Nevertheless, since there are now 16 integer registers in x86-64
architectures, a lot of them are absolutely symmetric and exchangeable. Our
comparison relation takes that symmetry into account by having exchangeable
source registers renamed to only give credit to their order of appearance in
instruction behavioral equations.

Numeric constants are also a source of combinatorial explosion in instruc-
tion test generation. Testing all combinations of immediate values in x86-64
instructions would not be feasible since most instructions with immediate val-
ues accept 32-bits forms of these immediate values. Yet, different immediate
values can lead to radically different behaviors. In particular, some remarkable

6

values (e.g. zero, binary string maximal values) may trigger very specific parts
of the code. Our current code introspection mechanism does not capture these
conditions and thus cannot isolate proper tests. So far, the best solution we
have is to cover evenly immediate values according to the number of zeroes and
ones in their binary representation. Thus, the relation order for numeric con-
stant tells that a constant is greater than another is if it has more ones in its
binary representation. For 32-bits integers, this generates 33 constant classes.
After a sufficient number of draws, each of these classes have a representative.
This forces the selection of remarkable values (such as 0) despite having a low
initial selection probabilty (e.g. 2−32 for 0).

The scanning of the instruction set is done using random draw in the en-
coding space of the instruction set. In the past, we dealt essentially with fixed
size instruction sets or variable length instruction sets with reasonable upper
bound on length. In the case of the x86-64 instruction set, the upper bound
on instruction length is 15 bytes. Without caution, the encoding space explo-
ration would span over more than 1036 possibilities. By taking into account the
already decoded instructions and proper mapping of not scanned regions, it is
possible to reach an evenly distributed exploration of the encoding space.

3.2 Unit test generation and execution

Once the instructions to test are selected and their behavioral description ex-
tracted, the test generator runs to package the instructions under test in small
sequences of instructions suitable for native and simulated executions. This
packaging involves writing input registers with random inputs coming from an
external buffer. Additionally, some register values need to be fixed in order to
restrain memory references to safe memory locations. The packaging also in-
volves writing back modified values to a predetermined memory region for later
processing.

Finally, the generated tests are executed in a round robin fashion with ran-
dom inputs. Random generation is performed using reproducible strategies so
that found bugs can be easily pinned. The execution is done natively by casting
the generated code to a function pointer and directly calling it from the testing
program. A simulator is embedded in the program to run the same code. At
each instruction, native execution and simulation are compared according to
their produced output.

4 Experimental Setup

4.1 Reference hardware

In our approach, the test generator and the simulator, both written in C++,
are seamlessly integrated in the same program. Compiling the program for
the architecture targeted by the tests (in our case x86-64) allows to go one
step further in integration: allowing the tests generation, the tests simulation,

7

the tests native execution and the tests result comparison to happen in the
same program. This integration allows straightforward verification of billions of
randomly generated tests in seconds.

The verification program was executed on a simple laptop sufficiently recent
to provide all instruction set features needed to run generated tests. Experi-
ments run on an Intel CoreTM i7-4810MQ (Haswell) CPU. The available features
are summarized in Table 1.

Category Support and comments Sim. Nat. Test
Legacy Floating Point x87 not tested Yes Yes No

MultiMedia Ext. MMX no supported No Yes No
Streaming SIMD Ext. SSE SSE2 SSE3 SSE4.1-2

Yes Yes Yes
Advanced Vector Ext. AVX AVX2 (approx. FP)
Optional instructions cmov popcnt lzcnt tzcnt Yes Yes Yes

Table 1: Instruction set features of Real hardware, Simulator and Test sequences

4.2 Unit test filtering

As mentioned in Section 3.1, the whole instruction encoding space is scanned
to select instructions to be tested. Nevertheless, not all scanned encodings
translate in valid testing instructions. First, encoded instructions may really
be undefined. Though increasingly rare as the instruction set is continuously
enriched with new instructions, there are still holes in the x86-64 instruction set.
In [5], Christopher Domas shows techniques to probe existence of instructions
in the whole encoding space. Surprisingly, he finds instructions that seem valid
(following conventional patterns of other legitimate instructions), but are not
(yet) documented in Intel specifications. In this work, we only select instruc-
tions that our simulator recognizes. This choice may legitimately appears as a
strong limitation, but our simulator already recognizes all instructions decoded
by the latest GNU binutils (relying on the widely spread libbfd library). Sec-
ond, selected instructions may be already over-represented in previously selected
tests (e.g. no need, and no time to test all 232 variants of a move-immediate-
to-register instruction). Finally, some instructions may not safely be executed
in a standard userland environment (e.g. system instructions).

Table 2 provides the main test rejection categories encountered during a 105

samples instruction scan. In the end, only 11% of the scanned instructions are
kept. More than 20% of all scanned instructions are left aside because they
are considered redundant. Note that this figure grows significantly with the
amount of scanned instructions, because the distinct behaviors coverage grows
with scanned instructions. More details about instruction tests coverage are
discussed in Section 5.

A significant portion of rejected instructions (the remaining 69% of all scanned
instructions) is due to limitations of our current tester. Some instructions would

8

need additional work to be handled correctly during their native execution. Cur-
rently, we do not handle branch instructions that represent 11% of all scanned
instructions. A random branch instruction can transfer control to arbitrary
memory locations, which is relatively unfortunate for our self-tester. Using vir-
tual memory, memory protection and well-designed exception handlers ([5]), we
could overcome the limitation and actually observe the native branch behavior,
but that is not yet implemented.

Instructions Rejection reason
29416 Reserved register access
20786 Redundant tests
14454 Undefined instructions
10376 Branches instructions
4078 Malformed addresses
3257 Not implemented
2951 Legacy x87 floating-point
1640 System (privileged) instructions
1562 RIP relative addressing
342 FS/GS segmented addressing
30 Environment dependent instruction (counters, caches)

Table 2: Instruction scans and test selection

Additionally, our current testing capabilities prevent us from handling a
significant amount of memory instructions (6% of scanned instructions) be-
cause their address computation is not yet compatible with our address gen-
erator: RIP-relative, segmented and absolute addressing. In addition, legacy
x87 floating-point requires special non-IEEE floating-point arithmetic, which is
currently not supported in the simulator.

Finally, there are two special categories of rejected instructions, which are
hard to test but crucial for cybersecurity: system and environment dependent
instructions. They represent a small fraction of scanned instructions (less than
2%), but they are a major vector of cyber-attacks. On the one hand, the
behavior (or misbehavior) of system instructions is often abused in malware
codes. On the other hand, environment-dependent instructions are often the
cornerstone of timing attacks or anti-tampering techniques. For the former
system instructions, testing is hard because their outputs and side effects are
often difficult to confine and capture in a simple test application. For the later
environment dependent instructions, testing is also hard because their inputs
(hardware counters, timers, caches state...) are naturally difficult to control in
a native execution environment. However, in sandboxed analysis environments,
these instructions will often be handled differently from the other instructions
with special techniques ranging from taint analysis to symbolic execution. We
thus argue that the testing of these instructions requires a dedicated effort,
which goes beyond the scope of this current work.

9

5 Results

Our current simulator has been used to validate and analyze several Intel 64-
bits applications for more than two years. The simulator was also used in an
earlier form dedicated to analyze 32-bits applications (as an IA-32 instruction
set simulator) for 10 additional years. During the last year no bug were found,
despite using the simulator on more than 5 real-life software codes with trace
comparison with native execution; a trace was extracted from simulator execu-
tion and that trace was compared to the native execution using single-stepping
instructions in a debugger (here GDB, the classic GNU debugger).

The application of our approach eventually lead to a lot of results regarding
bugs in our code but also our very understanding of the x86-64 instruction
set. Two bugs were due to development errors with roots in straightforward
misunderstanding of the specification. Nevertheless, some other bugs were really
due to specification misunderstanding on some ambiguous points.

5.1 Instruction tests coverage

Before actually running tests, the self-testing simulator performs a phase of unit
tests selection. As mentioned in Section 3.1, the target instruction set is scanned
to discover relevant instructions to test. The scanning algorithm is designed to
perform a random, but evenly distributed, instruction set space exploration. In
order to get an idea of our selected test coverage, we measured the evolution of
selected tests during the scanning phase.

Figure 3 shows the result of coverage measure for two algorithms. The left
part of the figure represent selected tests for our baseline selection algorithm, as
explained in Section 3.1. For this algorithm, we scanned 1M instructions, which
resulted in approximately 45K selected instructions. When we exceed 500K
scanned instructions, the scanner begins to slow down significantly, mainly due
to the associative container holding records for already scanned instructions.
Because of the slowdown, we failed to obtain a satisfactory asymptote. Thus we
introduced a simplified selection algorithm to see whether we could obtain better
coverage figures. The second selection algorithm (corresponding to the right
part of Figure 3) differs from the baseline algorithm in its handling of constants.
In this second version, constants are considered all equivalent, whereas in the
former algorithm only constants with an equal number of ones where considered
equivalent. This heavy cut in the instruction set exploration space allowed us
to get closer to a satisfactory coverage. Nevertheless, the slowdown limitation
of our current algorithm would require an optimization effort.

The final database of 45K instruction tests revealed bugs of various forms.
Many bugs were operand swaps occurring in rare instructions (input and out-
puts). Only one computation-centric bug was found; the three-operand form
of the imul instruction was incorrectly computed in our simulator (this three-
operand form is rarely emitted by conventional compilers). Surprisingly enough
no address-computation related errors were found. This may be due to 1/ the
strongly factorized addressing modes (ModRM) of x86 machines that makes

10

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5
1

10

100

1000

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5
0

500

1000

1500

2000

2500

3000

3500

4000

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5
10

100

1000

10000

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

S
el

ec
te

d
(g

ro
w

th
)

Analyzed instructions (one count)

S
el

ec
te

d
(c

um
ul

at
iv

e)

Analyzed instructions (unique sample)

Figure 3: Evolution of selected tests over analyzed instructions for two different
selection algorithms.

various forms easily covered by conventional code and 2/ the significant por-
tion of the addressing modes that we cannot yet handle (absolute, RIP-relative,
no-base register. . .). Finally, we found many undefined instructions that were
mistakenly recognized by our simulator (illegal prefixes, shadow encodings. . .).

5.2 QEMU detection using x86-64 segment prefixes

Intel processor architectures provide an addressing mode for memory operations
called the segmented addressing mode. This mode allows the computed mem-
ory address of a memory operation to be relocated in a given memory region
(segment). Though this mechanism was initially designed to extend accessible
address space on 16-bits machine, it has evolved among processor generations.
It is now slowly being deprecated, especially since AMD’s 64-bits transition.
Though two segments have been preserved, the four first data segments have
been drastically simplified:

“In 64-bit mode: CS, DS, ES, SS are treated as if each segment base
is 0, regardless of the value of the associated segment descriptor base.
This creates a flat address space for code, data, and stack. FS and
GS are exceptions. Both segment registers may be used as additional
base registers in linear address calculations (in the addressing of local
data and certain operating system data structures).” ([3])

The 64-bit specification regarding segmented addressing mode seems to im-
ply that segments still exist but that their parameters (base address and size)

11

are hardwired to a flat mapping. The manual later specifies segment prefixes
in a section called “2.1.1 Instruction Prefixes”. Instruction prefixes are cumu-
lative modifiers (1-byte long) located before the instruction in the instruction
flow. These instruction prefixes modify the behavior of the immediately follow-
ing instruction. Among these instruction prefixes, the segment prefixes allow
modifying the default memory reference segment of each instruction. AMD,
which has originally created the x86-64 instruction set, specifies (in Revision
3.2.2, 2017) that each segment override legacy prefix (explicitly CS, DS, ES,
SS, FS and GS) forces use of the corresponding segment for memory operand.
Moreover, to the best of our knowledge, this Intel manual section has not seen
any relevant modification to segment prefix description since the beginning of
the 64-bit transition. One can naturally think that CS, DS, ES, SS prefixes
are still active but that the segment they are referring to are now forced to flat
mapping. The reality is in fact different. Our self-testing simulator has gener-
ated an instruction test that revealed a discrepancy between native execution
and some well-known x86-64 tools.

Let us consider the instruction #1 of Table 3, which basically loads the con-
tent of the memory located at address $rdi into register $rax. If we prepend the
prefix FS to the instruction (see #2 of Table 3), the instruction now loads unam-
biguously from the address $rdi offset by the base address of the FS segment.
Now if we insert an ES prefix in between the FS prefix and the instruction itself
(see #3 of Table 3), things get weird. The Intel and AMD specifications seem to
imply that the ES prefix will override the preceding FS prefix and that the mov

instruction will act in flat memory mapping (because the ES segment is hard-
wired to flat mapping in 64-bit mode). Popular debuggers and emulators such
as GDB (version 8.2), QEMU (version 4.1.0) and most probably other x86-64
tools are in fact doing this interpretation. Our simulator was also making this
assumption, which turned out to be wrong; after native execution inspection,
we concluded that CS, DS, ES, SS prefixes are now completely ignored. Thus
when an ES follows a FS prefix, the FS prefix remains active for the following
instruction, meaning the access will be FS-mapped and not flat-mapped.

prefixes semantic interpretation
#1 mov ($rdi), $rax

#2 FS mov ($rdi), $rax

#3 FS ES
mov es:($rdi), $rax (QEMU, GDB)
mov fs:($rdi), $rax (Intel)

Table 3: Semantic interpretations of an x86-64 load instruction with a variable
combination of segment prefixes. Semantic interpretations are described using
assembly code in the AT&T syntax.

To sum up, all tools relying on the GNU binutils to perform x86-64 instruc-
tion decode and disassembly (e.g. GDB, the GNU debugger) produce wrong
outputs. QEMU (v4.1.0) also computes wrong addresses when this kind of

12

instruction is issued. Interestingly enough, the Valgrind tool [8] regards this
instruction as illegal, which is quite desirable for a code sanitizer. The Bochs
simulator [10], known for its accuracy, processes these instructions correctly. It
is worth mentioning the source code comes with a comment that explicitly states
“ignore segment override prefix” (for the CS, DS, ES, SS prefixes). Finally, the
Intel and AMD architectures agree on the treatment of these prefixes (ignoring
them), whereas their specifications clearly state the opposite (even explicitly in
the case of the AMD specification).

This bug is now fixed in our simulator and a bugfix request is currently sub-
mitted to the QEMU tool maintainers. We also developed a small application
that is able to use this discrepancy by comparing the results of loads with differ-
ent prefixes combination and easily differentiating between a native execution
and QEMU execution (sandbox detection).

6 Conclusion

In this paper, we have shown a novel technique to produce self-testing simula-
tors. This technique allowed quick setup of billions of relevant tests with a high
coverage and stress of the developed simulator. The self-verifying simulator has
successfully revealed critical bugs, one of those being also present in QEMU
(v4.1.0).

The use of C++ code introspection allows automatic high test coverage
with minimal code writing and no redundancy. Because it relies mainly on data
polymorphism and operator overloading, this technique is portable and can be
applied to other architecture simulators. We have already performed similar
instrumentations on PowerPC and ARM simulators, but focused on x86-64 in
this paper because the comparison with the real hardware can be performed
online, speeding up the test-and-fix cycle.

Finally, using C++ code introspection we can also easily repurpose our sim-
ulators for various applications involving dataflow or taint analysis, and also
just-in-time compilation and instrumentation. Thus, we strongly believe that
this approach to simulator development significantly improves code quality and
reuse.

References

[1] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. A.
Penry, O. Temam, and N. Vachharajani. Unisim: An open simulation
environment and library for complex architecture design and collaborative
development. IEEE Computer Architecture Letters, 6(2):45–48, Feb 2007.

[2] Alexei Bulazel and Bülent Yener. A survey on automated dynamic malware
analysis evasion and counter-evasion: PC, Mobile, and Web. In Proceedings
of the 1st Reversing and Offensive-oriented Trends Symposium, ROOTS,
pages 2:1–2:21, New York, NY, USA, 2017. ACM.

13

[3] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, August 2019.

[4] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. L. Potet, and J. Y.
Marion. BINSEC/SE: A dynamic symbolic execution toolkit for binary-
level analysis. In IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, volume 1, pages 653–656, March 2016.

[5] Christopher Domas. Breaking the x86 ISA. In Black Hat 2017, July 2017.

[6] Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. MultiNyx: A multi-
level abstraction framework for systematic analysis of hypervisors. In Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys ’18, pages 23:1–
23:12, New York, NY, USA, 2018. ACM.

[7] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C: A software analysis perspective. Formal As-
pects of Computing, 27(3):573–609, May 2015.

[8] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[9] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontana, F. Gritti,
and S. Zanero. Measuring and defeating anti-instrumentation-equipped
malware. In Proceedings of the 14th Intl Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages 73–96, 2017.

[10] The Bochs Project. bochs: The open source ia-32 emulation project.
http://bochs.sourceforge.net/, 2017.

[11] F. Recoules, S. Bardin, R. Bonichon, L. Mounier, and M-L. Potet. Get
rid of inline assembly through verification-oriented lifting. In Proceedings
of the 34th International Conference on Automated Software Engineering,
ASE 2019, 2019.

[12] X. Wang, S. Zhu, D. Zhou, and Y. Yang. Droid-AntiRM: Taming con-
trol flow anti-analysis to support automated dynamic analysis of android
malware. In Proceedings of the 33rd Annual Computer Security Applica-
tions Conference, ACSAC 2017, pages 350–361, New York, NY, USA, 2017.
ACM.

14

