How we detected LockerGoga

Guillaume Bonfante'2, Corentin Jannier?, Jean-Yves Marion! and
Fabrice Sabatier?

ILORIA - Université de Lorraine
2CYBER-DETECT
3CNRS

Abstract

Our objective is to illustrate the uses of the software GORILLE
that we develop at CYBER-DETECT. The recent attacks of LockerGoga
against Altran in France and Norsk Hydro in Norway illustrate the ne-
cessity to have advanced anti-malware defences. GORILLE’s basis are
morphological analysis. As such, the main features of GORILLE are the
following. It is robust with respect to heavy code obfuscations. It ap-
plies on dynamic data that can be forged within a virtual environment.
Its detection engine is based on behavior recognition.This contribution
is an extended version of our Blog’s post!.

LockerGoga is a malware that targeted two major companies at the
begining of 2019. The first one is Altran in France [4] while the second one
is Norsk Hydro [3]. The ”success” of these two attacks show the need of new
detection techniques. GORILLE is such a tool. It is now developed by CYBER-
DETECT following research in morphological analysis at LORIA [7, 8]. The
attack in France happened in January and the one in Norway in March.
Those attacks should have been stopped. Indeed, the GORILLE engine does
the job. It detects LockerGoga and its variants as we will show it.

In a nutshell, GORILLE identifies malicious threats embedded in Linux,
MacOS and Windows binary files. For this, GORILLE keeps a collection of
malicious behaviors. Each binary file submitted to GORILLE is then scanned
and as soon as a set of malicious inter-link behaviors is detected, GORILLE
raises an alert. There is no magic behind, just several years of hard work at
Loria’s Computer Science Lab.

!See http://www.cyber-detect.com/fr-blog.html.

What is a behavior? Hard to answer the question in general. In few
words, we built an abstract view of the control flow graph from which we
extract some chunks. For instance, for the Zeus malware, one of the behavior
corresponds to the execution of orders by a Command and Control. This is
illustrated by this snippet:

static WORD executeScript(LPWSTR scriptText, LPDWORD errorlLine)

{
WORD errorMessageld = 0;
LPWSTR *lines;
DWORD 1linesCount = Str::_splitToStringsW(scriptText, Str::_LengthW(scriptText), &lines, Str::STS_TRIM, 0);
//*errorLine = (DWORD) -1;

if(linesCount == (DWORD)-1)

{
errorMessageld = CryptedStrings::id remotescript_error_not_enough_memory;
WDEBUGO (WDDT_ERROR, " _splitToStringsW failed.");

}

else

//1488+8R87A1 AOBIGS.
for(DWORD i = 0; i < linesCount; i++)if(lines[i] != NULL && lines[i][G] != 0)

LPWSTR *args;
DWORD argsCount = Str::_getArgumentsW(lines[i], Str::_LengthW(lines[i]), &args, 0);

1 The first detection

Since GORILLE search process is based on a collection of malicious behaviors,
the first question which comes in mind is whether or not GORILLE is able
to detect LockerGoga. GORILLE knows 32 812 355 malicious behaviors.
And GORILLE identifies 60 malicious behaviors in the submitted sample of
LockerGoga. Actually, and we did it for fun, we used for the experiments our
old malware database dating from 2013. And six years later, it is still up to
date! As far as we know, LockerGoga did not exist in 2013. More precisely,
as we could see from the version of the libraries code that is statically linked
(see Section 2), the sample that we have has been compiled after 2018. But,
nevertheless, it reuses some much older components, some of them dating
from before 2013. Thus, as a partial conclusion, GORILLE doest not need
frantic malware database updates. Non solum it sees variants of old attacks,
sed etiam it catches new ones whenever they reuse old stuff.

File Edit Ac
Reduction optio

Project browser

& LockerGoga_Altran

@ LockerGo:

4 no-detected LockerGoga

Task Manager

. Hmir.tpz
0 Static DB search

The Cyber-Detect Girafe

tion Databases Report

ns |E| |I| |E| Site size |£|§\ | static analysis|

“| DB browser
Blacklist databases

ga_Norsk-Hydro Match sites: 60

LockerGoga_Altran.exe
Sites number: 9879
Match rate: 0.607 %
Whitelist databases

Sites number: 3573
Match rate: 1.679 %

The sample named LockerGoga_Altran [6] corresponds to the malware
that attacked Altran in January 25th, 2019. On March 8th, 2019 that is
two months later, MalwareHunterTeam discovered in [2] that a variant of
LockerGoga, that we name here no-detected _LockerGoga was left undetected
by all anti-virus products in Virus Total [5].

As we see, GORILLE detects 60 malicious behaviors in the yet undetected
sample of LockerGoga, which are identical to the previous identified ones!
The technological advance of GORILLE allows to stop variants of unknown
threats.

Actually, we can play with GORILLE a little bit more. Indeed, GORILLE
is able to learn the specific malicious functionalities of LockerGoga by it-
self. First, we built the ”LockerGoga” specific database which contains the
9879 behaviors (also mentioned as sites) in LockerGoga, not only bad ones.
Indeed, LockerGoga incorporates, as usual in any software, third party li-
braries coming from Microsoft and open source libraries. Collectively, third
party libraries also denote behaviors.

File Edit Action Databases Report
Reduction options |E\ \I| \E\ site size | 24 4| | |Static analysis|
Project browser Wave 0 | DB browser
& LockerGoga_Norsk-Hydro 401001 mov ebp, esp malware-static_24
-detected_LockerG " ockerGoga
@ no-detected LockerGoga 401006 lea eax, dword ptr [ebp - 0x24]

Task Manager

401009 push eax

401010 mov eax, dwi

401013 mov dword p Number of names: 1 Whitelist databases.
o Static DB search 40101a pop ebp Number of indexed sites: 9879

O CFG static analysis: LockerGoga 401060 push ebp

[l

40101b ret

+ 7| | 401061 mov ebp, esp
ANTNAR ciih n Ov2A S

- malware-static_24 |

I WL _24-20180108

That said, we can compare all behaviours of LockerGoga_Altran, which
were involved in Altran incident and the no-detected_LockerGoga. of Mal-
wareHunter. There are 4270 common behaviours, roughly the half, that are
common between bot samples.

The Cyber-Detect Girafe

File Edit Action Databases Report
Reduction options \E| |I\ \E| Site size | 24 || | Static analysis|

Project browser ~| DB browser

@ LockerGoga_Altran Match sites: 4270 Blacklist databases

@ LockerGoga_Norsk-Hydro malware-static_24

no-detected_LockerGoga - LockerGoga
Sites number: 10361

Match rate: 41.212 %

& no-detected LockerGoga

Task Manager LockerGoga_Altran.exe Whitelist databases
) . = Sites number: 9879 - WL _24-20180108
Q CFG static analysis: LockerGoga Match rate: 43.223 %

Q Static DB search
4

Then, using our tool binsim from the GORILLE suite, we can synchronize
both codes, that is to find the precise correspondence between functions of
LockerGoga_Altran and no-detected_LockerGoga.

2 Other forms of the attack

After Norsk Hydro attack, we wanted to recognize the malware. Since, the
detection of this version involves exactly behaviors of the Altran’s attack,
this is a strong clue that there is a relationship between the two samples.
After comparison with the LockerGoga database, no doubt that both are
very close.

Match sites: 4297

LockerGoga_Norsk-Hydro.exe
Sites number: 10758
Match rate: 39.942 %

LockerGoga_Altran.exe
Sites number: 9879
Match rate: 43.496 %

Let us add few words on the retro-engineering of LockerGoga. We learnt
from [1] that LockerGoga is using CryptoPP, a cryptographic functions li-
brary. Let’s go. First, we learn CryptoPP and then, we use the function

matching engine of GORILLE to simplify the IDA view?. Functions within

LockerGoga are automatically labeled with CryptoPP library’s names.

IDA - /media/fsabatie/Data/stock/Malwares/Ransomwares/LockerGoga/LockerGoga-Norsk-Hydro.i64 (LockerGoga-Norsk-Hydro.exe)
File Edit |ump Search Wiew Debugger Options Windows Help
S H & B fd B 3 v B@ ofghehtvs® e X » @ O Nodebugger MIECIEIRNE N

Library function | Data [l Regular function || Unexplored [l Instruction External symbol

[7] Functions window =][] DAView-A X | [ElCode synchronization X | [@) HexViewl X [A] Structures X [F] Enums X &3 Imports X | (@ Export
Function name -
[7] cryptoPP::SecBlock=uint, CryptoPP::Alle LockerGoga_No Hmir.tpz Score Function name
(7] cryptoPPuSecBlock=<uint,CryptoPFi:All 46bf55 423564 14 ecursiveMultiply(uint %uint *uint const uint const A.uint)
[7] cryptoPP::SecBlock=uint, CryptoPPi:All 48bfse 42356d 13 ecursiveMultiply(uint %uint *uint const .uint const Kuint)
[7] CryptoPPiiSelfTestFailurer: SelfTestFail 48bfed 423574 13 ecursiveMultiply(uint uint *uint const %uint const 4uint)
[7] CryptopPi:shiftwordsLeftayBits(uint 4. 46bf71 423582 13 ecursiveMultiplyluint uint *uint const kuint const 4uint)
7] CruptoRPishiftWords RightByBitstuint + 48bfed 42366b 23 ecursiveMultiplyBottom(uint *uint *uint const %uint const *uint)
ol . 48bfaz 423686 23 ecursiveMultiplyBottom(uint *uint *uint const %uint const *uint)
[7] cryptoPp::Simplekeyinginterface::Asse 46bfag 42368¢ 2z ecursivelMultiplyBottom(uint * uint %uint const #uint const * uint)
[£] cryptoPPuSimpleKeyinginterface:Geth, 46bfc 4236a7 23 ecursiveMultiplyBottom(uint *,uint *uint const *uint const * uint)
[7] cryptoPP::Simplekeyinginterface::Setki 48bfdo 4236b7 23 ecursiveMultiplyBottom(uint *uint *uint const %,uint const *uint)
[7) cryptoPPuSimpleKeyinginterface: Throy 48bfef 4236cC 23 ecursiveMultiplyBottom(uint *uint *uint const %uint const *uint)
[7] cryptoPP::Simplekeyinginterface::Throy 46005 423602 15 ecursiveMultiplyBottom(uint *uint *uint const %,uint const *uint)
[7] CryptoPP:iSimpleKeyingnterfacelmpl<t 46014 423670 15 scursiveMultplyBottom(uint % uit uint const kuint const %uirt)
CryptoPP: Simplekayinginterfaceimpl< 46c01e 4236fa 7 ecursiveMultiplyBottom(uint *uint *uint const %,uint const *uint)
[7) CryptoPPuSingleton<CryptoPF::Micros: 46c02d 4235a3 5 ecursiveSquare(uint *uint +uint const %uint)
i “ 4603f 4235b1 5 ecursiveSquare(uint *wint %uint const %uint)
[7] cryptorp:store GetNextMessage(volq 46c047 423507 5 ecursiveSquare(uint %uint *,uint const #uint)
[£] cryptoPP::StreamTransformationFilter: 46c061 4235¢h 5 ecursiveSquare(uint *uint *,uint const *uint)
[7] cryptoPP::StreamTransformationFilter: 46c079 4235e6 5 ecursiveSquare(uint *uint * uint const *uint)
[#] cryptoPP::StreamTransformationFilter: Memorize position | | Sync other IDA instance | | 46c088 42358 6 ecursiveSquare(uint *uint *,uint const *uint)
[7] cryptoPP::StreamTransformationFilter; 46c0a0 42360d 5 ecursiveSquare(uint *wint %uint const %uint)
[7] CryptoPPiiStreamTransformationF ter: 46c0b1 42361d 5 ScursiveSauare(uint &uint *uint const % uint)
[7] CryptoPP: stringNarrowtwehar t const 46c0ce 423630 5 ecursiveSquare(uint *wint %uint const %uint)
(7] cruptoppy stringstorerStoreinitialzs(c 46c0d7 423644 5 ecursiveSquare(uint *wint %uint const %uint)
ryptaPP:string i) 46c0e4 423642 5 ecursiveSquare(uint %uint *,uint const #uint)
[7] cryptoPP: Timer::GetCurrentTimervalue 46c0e9 42364f 5 ecursiveSquare(uint %uint *,uint const #uint)
% CryptoPP::UnalignedAllocate(uint) 46¢0f1 423655 5 ecursiveSquare(uint *uint * uint const *uint)
7] CryptoPP::Windowslider: ~Windowslide 47429 423289 4 CryptoPP_SetFunctionFointers
[F] CryptoPP:X509Publicki 474f2b 42328b 4 CryptoPP_SetFunctionPointers
[7) cryptoPP:x509PUblick: 474f3¢ 423297 4 CryptoPP_SetFunctionFointers
[7] CryptoPPiia_exp_b_mod_c(CryptoPPiin 47555b 428629 1 CryptoPP:iMontgomeryRepresentation: Square(CryptoPPulnteger const &)
[7] CryptoPPimemset z(void %int.uint) 475572 4286ba 2 CryptoPP::MontgomeryRepresentation: Square(CryptoPPulnteger const &)
(7] cruptoPProperatorCryptoPFsinteger 47558¢ 4286d6 3 CryptoPP::MontgomeryRepresentation: Square(CryptoPPulnteger const &)
5 Cgitn??"n;eretnw(c“r;?pm??” W:ge 47559d 42866 3 CryptoPPy:MontgomenyRepresentation:: Square(CryptoPPyinteger const &)
475764 418420 3 CryptoPP_TwosCompiement
[7] cryptoPPuoperator-(CryptoPPuiinteger 47576d 418432 3 CryptoPP_TwosComplement
[7] cryptoPP: operator(CryptoPP::nteger 47577b 418440 3 CryptoPP_TwosComplement
T 0 475786 41844c 3 CryptoPP_TwosComplement

3 Dynamic analysis

Up to this point, everything was done statically. But, GORILLE can take
benefit of our dynamic analysis framework. It is based on DYNAMORIO? with
special effort to make it transparent to anti-virtualization techniques. And
LockerGoga use some of them. There are suspicious cpuid instructions.
But, our tool also observed a ”SystemKernelDebuggerInformation” that is
clearly a protection. There is also call to ”OutputDebugString”, but that
one serves for other purposes.

Second point, our tool did not see any self-modification tricks. Thus the
static analysis of the file is sufficient. Again, that information saves so much
time for the retro-engineer. Nevertheless, the execution of the malware
is obfuscated. The main process launch some sub-processes that serve to
hide/encrypt data. For instance we can read within the execution trace the
following call:

2Here we use the famous disassembler IDA from Hexrays, but any other tool could be
used.
3 A dynamic analysis tool. See https://github.com/DynamoRIO0.

0x00ale492 call [0x7692103d] WINAPI CreateProcessW(
In [0x0044e00c] "C:\Windows\system32\cmd.exe"
_In_Out_ [0x0044e010] 0x004d7£f18

In [0x0044e014] 0x00000000

In [0x0044e018] 0x00000000
In [0x0044e01c] FALSE

In [0x0044e020] 0x00000000
In [0x0044e024] 0x00000000
In [0x0044e028] NULL

In [0x0044e02c] 0x0044e09c
Out [0x0044e030] 0x0044e110
)

Return TRUE

Yes, we follow sub-processes and threads. Our tool reveals these hidden behav-
iors.

4 Conclusion

All right, GORILLE sees LockerGoga. Does it mean it will discover every malware?
No, of course not. But, it clearly sees (some) malware that others don’t see. We
think that a panel of detecting engine using different technologies is much stronger
than a simple anti-virus software and want to contribute to this aim.

What are the limit of the system? Theoretically, malware recognition is unde-
cidable. In practice, with our dynamic tool which runs within Windows, it is not
that easy to escape GORILLE. We still need to work on other Operating Systems
such as Linux or MacOS and naturally Android and other IOT systems.

References

[1] https://labsblog.f-secure.com/2019/03/27/analysis-of-lockergoga-
ransomware/.
https://twitter.com/malwrhunterteam/status/1104082562216062978.
https://www.bbc.com/news/technology-47624207.

ESRCORS)

https://www.bleepingcomputer.com /news/security /new-lockergoga-
ransomware-allegedly-used-in-altran-attack /.

https://www.virustotal.com/en/file/eda26alcd80aaclc42cdbba9af813d9c4bc81{6052080bc33435d1e076e75aal
https://www.virustotal.com/# /file/bdf36127817413{625d2625d3133760af724d6ad2410bea7297ddc116abc268

G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry. Codisasm: Medium scale concatic disassembly of self-modifying
binaries with overlapping instructions. In 22nd ACM Conference on Computer
and Communications Security, 2015.

=N

[8] G. Bonfante, J.-Y. Marion, and F. Sabatier. gorille sniffs code similarities, the
case study of qwerty versus regin. In Malcon 2015, 2015.

