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Abstract—As chips become more inter-connected, they are
more exposed to both network and physical attacks rendering
it pertinent to ensure a sufficient protection level to them. In this
paper, we explain why it is worthwhile resorting to Artificial
Intelligence (AI) for security event handling and present an
experimental use-case of a crypto-accelerator protected by a mas-
sive fleet of digital sensors embedded on a Field-Programmable
Gate Array (FPGA) board. The data from this fleet of sensors
need to be aggregated and processed fast to produce exploitable
information while maintaining a low false positive detection
rate. We evaluate different Machine Learning (ML) techniques
and conventional method of perturbation detection using sen-
sor threshold. Analysis includes quantitative figures of merit
regarding Electro-Magnetic Fault Injection (EMFI) detection
comparing ML-based sensor teaming strategy and threshold-
based individual sensor approach to establish significant gain
in detection accuracy of the former. Upon carrying out detailed
evaluation it is found that the best working ML method achieves
∼ 32% higher accuracy at fault detection (with 97% true positive
rate) as compared to the conventional threshold based method
(with only 65% true positive rate).

Index Terms—Internet of Things (IoT), Artificial Intelli-
gence (AI), Machine Learning (ML), Threat Detection, Cyber-
Protection, Decision Making Process, Naive Bayes Classifier,
Embedded Security, Cyber-Physical Attacks.

I. CONCEPTUAL APPROACH & MOTIVATIONS

Security chips have long been designed with primary
goal to be tamper-proof. This strategy reflects the context
of resistance by increasing the barriers between the secrets
to conceal within the chip and an attacker. The chip
was, thus, designed to be a “digital safe”, with numerous
security functions implemented following defense-in-depth
methodology.

From a validation point of view, the device (named “TOE”)
needs to go through strict certification schemes such as
“Common Criteria” (ISO/IEC 15408) which specify methods
to grant a sufficient assurance level in those chips. However,
this methodology relies on hypotheses on the “Operational
Environment”, which is expected to be “well-behaved”.
Addressing independently the inside and outside, security is
relevant for unconnected devices. For instance, traditionally,
the devices were designed to expose minimalistic Application

Programming Interface (API) [1] and are seldom meant
to be upgraded on-the-field after fabrication, since this is
considered a weakness.

In the current context of connected chips, it is no longer
realistic to grant security by reducing the possibilities of
interaction with the user (that is the attacker). Indeed, chips
take on more value if they can be operated in customized
ways and be adapted to ones needs. We shall, thus, envision
security in the context where the attacker is close to the
secrets and has many degrees of freedom in attempting to
trick the chip’s defenses.

This situation is, however, not a net regression from the
“golden age” of chips seen as shelves protecting a valuable
pearl. Indeed, we, designers, can leverage on two innovations
viz. firstly, security functions can be more complex than
before, owing to greater possibility to integrate complex
functions in silicon or in embedded firmware, and secondly,
devices being connected consists in an increased attack
surface, while at the same time allow for off-loaded security
analysis within cloud (hence a still larger computational
power required to investigate the security of the chip) and to
cross-check security levels with other devices belonging to the
same fleet. Indeed, the larger threats arise from cyber-attacks
(hence, arising “over the top”), and simultaneously touch
several devices, which can in response collude to detect
collectively that they are in a dangerous situation, and, thus,
take proactive actions to grant their own security. The Cloud
can itself perform some AI treatments to detect simultaneous
or similar incidents/attacks perpetrated at the same time on
several devices, which is the sign of a distributed attack
attempt (such as Mirai, Hajime, and other IoT botnet
infections).

II. SENSING THE NORMAL & THE PATHOLOGICAL

Today, chips are equipped with multiple sensors, of
different kinds, some with a primary goal of data acquisition
functionality ([2], [3]), but also sensors for adaptation to the
environment (like battery level, temperature, wireless activity



Figure 1: Smart Monitor is an AI-enabled on-chip security headquarter creating collective intelligence and coherence between
IPs (analog or digital) and other whistleblowers and weak signals (software or hardware) improving both security event
detection, analysis, diagnostic and decision-making process.

in the neighborhood, etc.). All those can advantageously
complement security sensors. Security sensors watch events
that would hint for attack conditions. Those events could be
one of the following:

• abnormal physical operating conditions in terms of tem-
perature, voltage, clock frequency, reset line stability,
embedded health tests (on True Random Number Gen-
erators, Physically Unclonable Functions, etc.),

• abnormal activity (detection of port scanning, unexpected
data flowing out the device, unusual load of processor,
strange failure signals such as multiple segmentation
violations detected by the kernel within a short period
of time, etc.)

All these pieces of information can be processed to decide
whether the device shall be considered in a nominal or in
an unsafe environment. This is where AI comes into play.
Indeed, AI is the solution to analyze fuzzy information arising
from “big data” measurements collections. Aggregation of
heterogeneous signals allow to leverage unexploited sources
of information such as randomness quality, tiny clock
modulation, noise statistic moments modification, etc. for
security event detection.

Machine Learning (ML) techniques are widely used to
diagnose various wireless sensor-based systems [4], [5], but
such approaches have not yet been applied to hardware
cybersecurity. Moreover for security chips, this AI shall run
within the chips as an embedded hardware monitor [6], [7],

as the rate and the volume of data collection is high, and
because decisions must be taken fast. Indeed, a laser-induced
or a malware-enabled attack requires few clock cycles to
exploit the chip: installing a backdoor is a matter of kilobytes
of payload. Therefore, instant detection is compulsory, which
can only be achieved by a hardware approach.

AI is embedded under the form of a “Smart Monitor™”.
The rationale is the following:
• after tape-out, engineering samples are characterized in

lab conditions: data from sensors are collected, and
labeled by security condition (benign/malicious, attack
discovery of payload injection phase, etc.)

• a model is derived and then saved in FLASH memory,
protected by authentication

• at runtime, the Smart Monitor classifies the operation
conditions according to the learned labels (security cate-
gories), and

• transmits the report to upper layers;
• in return, the security policy can be adapted from outside

of the devices, if a presumption of an attack is computed
from the correlation of the reports of several such devices.

This Intellectual Property (IP) finds application in smart
devices (smartphones, laptops, smart home/office boxes),
highly secure chipsets (hi-end smartcards, set-top boxes),
cars (TCUs: Trusted Communication Units, ECUs: Electronic
Control Units), and server security monitors for network
appliances.



Attack

Spacial
resolution

Temporal
resolution

Perturbation
type

No

Yes

Harmonic

Impulsive

Global

Local

Electromagnetic

Laser

Situation is safe

Abnormal
sensor
input

...

Figure 2: Various detection modalities in the “Smart Moni-
tor™” IP.

The Smart Monitor not only improves the detection of
a potential attack but also provides the diagnostic report.
Additional information regarding the nature, temporality,
locality, and intensity of the attack or even the attack phase
can be derived (cf. illustration in Figure 2). This information
allows to take the right decision at the right time in full
knowledge of the situation. Security strategy can be adapted
depending on the “anatomy” of the attack, either deceptive,
defensive, offensive, analytical, etc. The ultimate goal is to be
able to predict the threat and to stay ahead of it by gaining
advantage over the attacker. All the features of this Machine
Learning-enabled technology situated at the heart of silicon
is depicted in Figure 1. There are three execution states viz.
Learn/Train state, classification state, and decision state to
apply security countermeasure (policy based on threat level)
or simply raise an alarm.

Ultimately, this fruitful source of information allows
to perform Business Intelligence. Indeed, Smart Monitor
provides rich information regarding your devices post-
deployment. This feedback, regarding attack typology and
related statistics w.r.t device category, geographic area,
technology nodes, etc. represent highly valuable information
sourcing directly from the field and is made intelligible by
powerful AI methods.

A part of this work is published in [7], where the main idea
was to present a proof-of-concept about the Smart Monitor™
IP with a minimalistic implementation of the ML technique
using sensor aggregation strategy. This work is, indeed, an
extension and more accurate in-depth study on the same topic.
We carried out extensive evaluation using different strategies
to establish the quantitative gain of introducing AI in physical
threat detection of EM fault injection at the hardware level.

III. DIGITAL SENSORS

To illustrate the feasibility and the relevance of such an
AI-driven approach, we present in this paper some selected
results for improved detection of Electromagnetic Fault
Injection attacks (in short EMFI) thanks to a plurality of

Figure 3: Digital Sensor iso-status curves. The outputted status
of a DS, related to the propagation time of a signal along a
delay chain, evaluates locally a threat level (here from 0 to
32) allowing threshold-based detection of FIA. The sensor’s
behavior regarding voltage and temperature variations has been
theoretically studied and experimentally fully characterized as
shown in this Figure.

dedicated digital sensors (DS).

Unlike analog sensors which are dedicated to the detection
of a specific perturbation attack, Digital Sensors are delay
chains which are longer than the critical path, thereby catching
delay faults before any effect on the user logic. The rationale
is, for instance, explained in [8, Fig. 14, page 189]. The
digital sensor is designed to detect various threats belonging
to the family of Fault Injection Attacks (FIA), such as clock
glitch, overclocking, power glitch, underfeeding, heating,
laser attack and EMFI. Individually, Digital Sensor (DS)
converts all monitored stresses into a timing stress which is
then measured. When a threat is detected, it provides the
system with a measurement of the threat’s level and it raises
an alarm. These sensors are ultra-sensitive to temperature and
voltage variations and beyond to internal on-chip activities
(e.g., cryptographic hardware acceleration).

Primarily of security purpose, these digital sensors appear
to be opportunistic temperature and voltage sensors as can
be seen in Figure 3 which represents iso-status curves of one
DS. The effect of increasing the temperature is to slow down
the combinational logic, which results in an increase of the
DS status. This increase can be compensated by an increase
of the power supply, which accelerates the combinational
gates when increased. Thus, the DS can advantageously be
used as a correlated sensor, as recommended in the context
of safety (cf. section D.2.10.2 of ISO 26262-5:2011).

This extreme sensitivity allows very accurate detection of
FIA, but obligates the IP designer to set a precise threshold



(derived through simulations or empirically evaluated) which
is far to be an easy task impacting directly the balance between
false negative and false positive event detection. Additionally,
sensors calibration are usually highly dependant of the target
architecture and by essence hard to be transposed owing
to technological dispersion. To illustrate the rich variations
of the outputted status that we aim to exploit for improved
detection, let us represent cartographies of values for a matrix
of DS spread over on a Sakura–G FPGA board, also provided
with a hardware crypto-accelerator.

Figure 4 shows snapshots of DS values in three situations
viz. nominal, when the crypto-accelerator operates, and per-
turbed, when a very low-intensity EM injection is performed
during AES (Advanced Encryption Standard) computation.
Firstly, it can be observed that the output values of each
identical DS, highly depends on its location. Secondly, the
comparison between the three pictures allows to detect tiny
“pixel–to–pixel” variations, revealing internal activity (AES
computation) or perturbation attempt.

Figure 4: Cartography of a fleet of Digital Sensors spread over
a Sakura–G FPGA board in a nominal situation (left), when
the crypto-accelerator operates (center), and when a very low-
intensity EM injection is performed during AES computation
(right). Data obtained from DS with short status living in
[0, 16].

Nevertheless, DS–to–DS comparison contrast is low and
gives rise to a poor detection signal, meaning in practice
high false positive and false negative events. Moreover,
effects can compensate giving rise to equal status in nominal
situation and when AES computation is targeted by EM
perturbation attacks. The need for sensor teaming —fusion
of sensors— appears here to reduce the opportunity for and
limit the damage of potential attacks. The ML-enhanced
approach, that we propose here, allows to create collective
intelligence between these individual IPs. By leveraging
diversity of decalibrated sensors and complementarity, our
goal is to combine the effort and show the benefits of
multitude to gain assurance in threat detection: one may fool
one sensor 1000 times, but may not fool 1000 sensors for once.

IV. EVALUATION OF EMFI DETECTION OVER DIFFERENT
MACHINE LEARNING MODELS

In this section we discuss about the EMFI dataset that
has been collected for both nominal and injected scenarios.
To the dataset we apply different ML techniques to evaluate
the performance of each in terms of detection accuracy. The
process of preparing the dataset for training is also detailed
below.

A. Dataset Information

The EMFI dataset is recorded from sixteen Digital Sensors
(DS) on a chip executing AES encryption (shown in Figure
5). Same sized data is recorded for both Nominal (no EM
Injection) and Injected states that are classified as classes
0 and 1 respectively (a binary classification problem). The
same experiment is repeated with the EM probes placed at
four different arbitrary locations on the chip. The choice of
selecting the locations is based on the location of the Digital
Sensors in the design i.e. from closest to farthest from the
fleet of Digital Sensors, in order to have maximum coverage
guarantee. Thus, there are four parts of the dataset with each
having data for nominal and injected scenarios. Each part
contains 1000 Test runs with each run comprising 13 cycles
of sensor statuses from each DS. This can be understood
from the directory tree below:

EMFI_Dataset/

Part1/ (Chip Location 0)

Nominal (Class=0 : 1000 Tests)

Injected (Class=1 : 1000 Tests)

Part2/ (Chip Location 1)

Nominal (Class=0 : 1000 Tests)

Injected (Class=1 : 1000 Tests)

Part3/ (Chip Location 2)

Nominal (Class=0 : 1000 Tests)

Injected (Class=1 : 1000 Tests)

Part4/ (Chip Location 3)

Nominal (Class=0 : 1000 Tests)

Injected (Class=1 : 1000 Tests)

Figure 5: Apparatus setup for Electro-Magnetic Fault Injection
at Secure-IC S.A.S. facility.



Figure 6: A total of 16 Digital Sensors™ (DS) are used for this experiment. The data aggregation is performed when the DS
buffer is full, which has a depth of 13. Each 4 byte integer value from the buffer is linearly arranged for all the sensors to
form a 1-D vector of size 208 values that is fed as an input to the ML models.

B. Preparing EMFI Data for ML Training/Inference
While performing train/test, the dataset is used part-wise

as well as combined, in which all the four parts are combined
into a single dataset and randomized for training. The
significance of using separate and combined dataset is to
evaluate the ML models’ capacity in classifying between
nominal and fault injected scenarios where the EM injection
originates either from a single or multiple source locations,
thus, making the model robust against locality of attack.

For each experiment, the ratio of Train and Test data is
kept at 4 : 1 (or 80% and 20%), respectively. Since the
data representation is essential towards the accuracy of ML
models, we formulate various methods of data pre-processing
that are listed below:

1) Method 1: Each DS status per 13 cycles is fed sequen-
tially into the model in the order DS0–DS12. Thus, input
vector is of size 13× 1.

2) Method 2: All the DS statuses per test (13 consecutive
cycles), is arranged linearly and fed to the model. The input
vector for this is of size 208× 1 (13× 16).

3) Method 3: A moving average of all the DS statuses in
one test (13 cycles) is computed and fed to the model i.e. an
average of 16 vectors each of size 13. The input vector for
this method is same as Method 1 i.e. 13× 1.

4) Method 4: In this method, for each DS per Test, the
mean of the 13 status values is computed and all the values
are stored in a vector of size 16× 1 to feed the model.

5) Method 5: In this method, for each cycle, the status
values of each DS is arranged together into one vector of
size 16× 1 before feeding the model.

Empirical analysis proves that Method 2 (IV-B2) is the best
candidate for simplistic ML classification algorithms. Figure 6

shows the data aggregation methodology for Method 2. Each
DS is equipped with a status buffer of size 13 with each
memory element capable of storing a 4 bytes integer value.
This is due to the fact that it holds a large number of spread-
out parameters in single input. The averaging methods, also,
contain same information but, for simple ML models it is
difficult to unveil the features from them.

C. Accuracy Comparison of Tested ML Models

For our experiment we perform evaluation on four differ-
ent ML models including Support Vector Machines (SVM),
Logistic Regression Classifier (LRC), Naive Bayes Classifier
(NBC), and Multi-Layered Perceptron (MLP). Each ML model
is tested with all the five data representations to establish
that the second method works best in all cases and is, thus,
used in all further evaluations. A visual comparison over the
performance of all the ML models is presented in figure 7.

V. RESULTS: COMPARISON BETWEEN THRESHOLDING
AND ML METHODS FOR EMFI DETECTION

In this section we try to establish the significant improve-
ment in EM injection detection rate using ML models over a
thresholding technique. For a better quantification of accuracy
gain, an optimized thresholding technique is devised and
then compared with the best performing ML model. This
experiment comprises two parts viz. Optimizing the threshold
of the DSs, and testing the performance of the thresholding
technique over an unseen test dataset.

A. Threshold Optimization of every DS

For each digital sensor, firstly, the data is converted to the
average form as shown below in equation 1, where X is the
input vector (of size 13) and X’ is the vector obtained after
the averaging process.



Figure 7: Performance comparison as accuracy in predicting
EM Fault Injection from DS states over four different ML
methods. Each method is tested separately over the four
different parts as well as over the combined dataset (as detailed
in section IV-A). Naive Bayes Classifier (NBC) outperforms
other methods.

∀i in i = {0, 1, ..., 12} and,
X = {Vi} and X ′ = {V ′i }, where,

V ′i = Vi if i = 0, else V ′i = (Vi + Vi−1)/2 (1)

Secondly, a linear search algorithm, performed over 80%
of the dataset (similar to training in ML methods), finds the
bounds of both the classes (0: Non-injection, 1:Injection).
The bounds are Lower/Upper for class Zero/One. The lower
bound for class 0 is sufficient as a threshold boundary for
classification, and is, thus, chosen as the threshold for each
sensor. Thus, a test function simply places the incoming
sensor statuses within the bounds and predict the classes. This
implies that a value higher/lower (as per calibration) than
the threshold would send an alarm signal stating “injection
detected” scenario.

B. Accuracy Evaluation and Comparison with best ML
method

Post optimizing the threshold, a test analysis with the
remaining 20% of the dataset is performed. The results are
then compared with the results from ML analysis as shown
in the Figure 8. The graph clearly depicts that the results of
NBC are not affected by the position of the EM probe on
the chip, and offers a near equal prediction in all cases. On
the other hand, the accuracy of the threshold method has
dependency over the localization of EM injection i.e., it only
works well in cases where the sensing is better.

A detailed comparison of both the methods with False
Positives and Negatives is shown in Table I. It is evident
that false positives is nearly accurate in both cases i.e. both

Figure 8: Performance comparison in accuracy of predicting
EM Fault Injection, from aggregated DS states, of Naive Bayes
Classifier (NBC) and Thresholding Method on the EMFI
Dataset. While there is minimal difference in accuracy for
the NBC over different parts of the dataset, the accuracy of
threshold method is significantly affected.

methods are able to pass non-injection scenarios. However, the
real challenge is to detect an injection activity and the rate of
detection is much higher (97.00%) in case of ML method as
compared to the threshold method (65.32%).

(VALUES IN %)

False
Positive

False
Negative

Acc: w/o
injection

Acc: with
injection

Overall

Naive Bayes Classifier

PART 1 0.00 2.50 100.00 95.00 97.50

PART 2 0.00 2.02 100.00 95.96 97.98

PART 3 0.00 0.28 100.00 99.45 99.72

PART 4 0.00 0.00 100.00 100.00 100.00

Combined 0.00 1.49 100.00 97.00 98.51

Thresholding Method

PART 1 0.08 39.00 99.85 22.00 60.92

PART 2 0.00 18.83 100.00 62.35 81.17

PART 3 0.01 8.76 99.99 82.43 91.23

PART 4 0.00 0.00 100.00 100.00 100.00

Combined 0.00 17.18 100.00 65.32 82.82

Table I: In-depth comparison of Threshold and the best per-
forming ML Model (NBC).

VI. SOME MORE RESULTS

Machine learning methods are an exquisite solution to
manage the uncertainty and aggregating multivariate (noise)
information. To that end, we perform supervised ML on all
DS outputs, in diverse situation to output a ML-based model,
that acts as “a collective threshold” for binary classification.
Figure 9 presents the detection accuracy on a selected test
dataset, to compare the efficiency of the Smart Monitor
with single DS signals. Given the extremely tiny amplitude



Figure 9: Comparison of the injection detection rate of Smart-
Monitor with 2 individual DS signals arbitrary chosen. The
EM injection is performed at clock cycle 24 and its duration
is exactly one cycle. The detection accuracy, on a selected
test dataset with an injection at fixed duration, achieves 100%
while keeping a null false positive rate at nominal cycles.

of the EM variations, the single sensor fails to detect the
perturbation. The teaming strategy (Smart Monitor) provides
an intelligent aggregation of single DS signal and eliminates
false negatives at the time of injection while keeping the false
positive rate at 0 during unperturbed computation.

We quantitatively evaluate the effect of sensor teaming
using a second dataset, generated from a chip embedding
32 DSs. Figure 10 presents statistics of EMFI detection rate
(true positive performance value) when the statuses from 1
to 32 sensors are used as inputs of the ML model during the
learning phase. The graph shows the diversity of detection
performance on different training and validation datasets,
and more importantly with different selections of sensors. It
illustrates the sensor teaming approach as a winning strategy
and moreover proves that the extracted information highly
depends on the selected sensors. Flyer points show that using
a small number of sensors, as little as 1, can lead to excellent
accuracy, up to 100%, but also to a very poor performance,
showing the importance of the considered DS.

This gives insight on which sensors brings the most useful
information (discriminating between nominal and non-nominal
situations) and thus reveals the precise localization of the
attack as the position of a few DS that could be matched
on Figure 4. Choosing a high number of sensors (over 15)
guarantees an accuracy around 90% and can achieve up to
100%. The 10% margin is due to material uncertainty over
the EM injection timing, leading to misalignments on the
supervised dataset, and occasionally inducing misclassified
items.

Figure 10: Boxplots of EMFI detection performances (true
positive detection) for various sensor aggregation size and
various test datasets. The statistics are gathered over 500
experiments by randomly splitting the dataset into train and
test and randomly selecting the DS to consider during the
training phase. The boxes are drawn from quartile 1 (Q1) to
quartile 3 (Q3) while the whiskers are sets to Q1 - 1.5IQR
and Q3 + 1.5IQR with IQR being the interquartile range. The
flyers points represents samples beyond the whiskers limits.
The number of sensors included in the collective machine
learning model is studied to show the benefits of the approach
for EMFI detection compared to individual sensor threshold-
based model. The average detection score considering 20 DS
is increased by 3 times comparing to using only 2 DS.

VII. CONCLUSION

If EMFI on chip focuses on local effect, it often shows
a very characteristic diffusion phenomena of the signal that
can be of useful information. An imaginable evolution of the
Smart Monitor would be to consider DS signals as temporal
sequences of cycles, in order to detect more efficiently the
injection timing and locality by learning the inherent noise
induced by the perturbation.

In our implementation effort to contrast inferencing of
the DS data to detect a physical EM injection on the chips,
we show how machine learning methods are more robust in
terms of injection localization of the EM probes and also
near accurate to classify between a non-injected and injected
state. We present in our case simple linear ML algorithms and
for comparative analysis we use MLP. Complex non-linear
neural-networks based AI techniques are not implemented as
to maintain a low-power light-weight core on the hardware
fabric with very-high throughput. Owing to the fact that the
Digital Sensors produce continuous status signals, the data
distribution is Gaussian, and therefore we use Gaussian NBC
as the final choice, since it works best for this problem.

As a final perspective, we attract the reader’s attention on
the fact that the Smart Monitor itself can be the target of
attacks. The adversary’s goal is to manipulate the chip sensors
such that it can be corrupted while being misled to be under



a nominal or benignly abnormal operating conditions. Hence,
widespread use of AI methods should be carefully tailored for
security purpose, requiring high-value security expertise and
methodology for trustworthy AI implementation.
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