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Abstract. In this paper, we first study the problem of privacy budget
distribution in adaptive multi-data consumers (i.e., users) differential
privacy use cases. Then, we present an extension of the classic differen-
tial privacy formal model that allows taking into consideration data con-
sumers’ information disclosure risk when distributing the privacy budget
among data consumers. Finally, we define a method allowing to optimally
distribute a given privacy budget among a private database’s data con-
sumers.
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1 Introduction

In the last decade, a new paradigm called differential privacy has emerged as
a new formal model that ensures a more robust privacy guarantees, regardless
prior knowledge an adversary may possess [3]. Differential privacy model guar-
antee that given two databases that differ exactly in the information of a single
individual ind (the two databases differ exactly on the record that contains the
information of ind), a differential private data analysis mechanism will output,
for the two databases, randomized results with almost identical probability dis-
tributions. Hence, regardless how much he/she knows about the other records in
the database, an adversary who sees the result of the performed private analysis
will not be able to guess with high confidence the database over which the pri-
vate analysis was performed. Therefore, the adversary cannot guess with high
confidence whether ind is present in the database.

Differential privacy’s strong privacy guarantee comes at the price of data
consumers’ (e.g., individuals or entities that are going to perform data anal-
ysis over the private database) queries and analysis responses precisions. This
trade-off between the level of ensured privacy and queries’ responses precisions is
represented in the differential privacy model through the parameter ε. A smaller
value of ε means strong privacy guarantee and low queries’ response precision.

The last five years have seen several papers [1, 2, 6–8, 11, 12] that study the
trade-off between privacy and utility (precision) in differentially private mech-
anisms for different kinds of queries (e.g., counting queries [2, 7, 11], histogram
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queries [12], marginal queries [1], etc). The aforementioned approaches tried to
design new differential private mechanisms that allow either to enhance the pre-
cision of the responses to specific kind of queries or to reduce the quantity of
privacy budget to be consumed for each query (i.e., increase the total number
of queries that can be performed over the database).

Although the differential privacy model has drawn attention in quite a few
areas and despite the over a hundred papers on differential privacy that are pub-
lished from the security, database, machine learning, and statistics communities,
some open problems remain untackled. The most obvious is how to optimally dis-
tribute the total privacy budget that can be consumed over the private database
among the set of data consumers. To the best of our knowledge, all existing
approaches and their developed solutions such as PINQ [9] and Airavat [10] sup-
pose that all data consumers that can query the private database share the same
privacy budget (i.e., the total budget specified by the data owner). This config-
uration will allow a data consumer to consume more privacy budget than other
data consumers. In the case of a malicious data consumer, he/she can prevent
others to query the private database by consuming the total privacy budget.

In this paper, we present an approach that extends the classic differential
private model to optimally distribute the total privacy budget to be consumed
over a database among the data consumers that will be allowed to query the
private database. The idea of our approach is to use, for each data consumer,
the risk that he/she will publish or disclose the information he/she will learn
from the private database to optimally distribute the privacy budget.

2 Background on differential privacy

Informally speaking, an algorithm is differential private if a small change in its
inputs does not modify considerably its outputs. Differential privacy is formalized
as follows.

Definition 1 (ε-differential privacy [5]). An mechanismM is ε-differentially
private if for all input database d, any d′ ∈ Dd and any subset of outputs
S ∈ Range(M), the following condition holds:

Pr[M(d) ∈ S] ≤ exp(ε)× Pr[M(d′) ∈ S]

where Dd is the set of d’s neighboring databases, each differing from d by at most
one record and the probability is taken over the randomness of the M.

The previous definition states that any data consumer who will observe the
result of the execution of M over d cannot guess the presence of an individual
in d with more than 100× (|1− 1/exp(ε)|)% of confidence.

Differential privacy formal model allows computing the level of ensured pri-
vacy after performing a set of queries on a same database d.
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Theorem 1 (Mechanism Composition [4]). Given a set of k mechanisms
M1, · · · ,Mk such that each Mi is εi-differential private, i ∈ [1, k]. Then, any

mechanism M that is a composition of M1, · · ·Mk is
k∑
i=1

εi-differential private.

Note that in the previous definition, each mechanism can be considered as
the differential private execution of a query or analysis over the d. So, if d’s data
curator wants to allow a data consumer to execute a set of queries q1, · · · , qk
using the mechanisms M1, · · · ,Mk, he/she needs to assign a privacy budget

greater or equal to
k∑
i=1

εi to the data consumer.

3 Problem Statement

Let us consider that the total privacy budget for a medical database d specified by
a hospital is εt. Let us also suppose that d will be used by three data consumers:
A data scientist ui working in an insurance company, a data scientists uh working
in the hospital, and a researcher ur. The three data consumers want to perform
interactively a set of queries. That is, the hospital does not know in advance the
set of queries to be performed by each data consumer. So, the main question
here is how to manage the usage of εt by the three data consumers?

One trivial solution is to share εt between the three data consumers. However,
This solution will allow a data consumer to consume more privacy budget than
others. In the worst case, he/she can prevent others to query the private database
by consuming the total privacy budget (e.g., by performing sequentially a high
privacy budget consuming query many time).

To avoid the previous problem, the hospital can try to distribute the total
privacy budget between the data consumers. In this case, due to the fact that
differential privacy’s adversary model supposes that the risk/probability that (i)
each data consumer will disclose the information he/she learned about d is equal
to 1, εt should be distributed as follows:

εuh + εui + εur = εt (1)

Despite that the previous formula represents a privacy budget distribution
condition, it does not specify how much privacy budget the hospital should give
to each data consumer. Moreover, assumption (i) is too strong and even not valid
in our case, since logically, ui and uh have less probability than 1 to disclose the
information they learned. We strongly believe that by quantifying and taking into
consideration data consumers disclosure probabilities in the differential privacy
model, we could have a better distribution of the privacy budget over the data
consumers that are authorized to query d.

4 Proposed Solutions

Our solution extends the differential privacy model for optimal privacy budget
assignment among data consumers. That is, instead of reasoning about the in-
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formation leaked to all data consumer, our approach consists of modeling the
leaked information for each data consumer separately. The following definition
quantifies the quantity of leaked information to each data consumer.

Definition 2. Given a data consumer u of a private database D and its privacy
budget εu. Suppose that u queries D by using a differential private mechanism
M, then the following condition holds:

Pru[M(D) ∈ S] ≤ eεuPru[M(D′) ∈ S] (2)

where D’ and D are adjacent, S ⊆ Range(M), and Pru[c] denotes the probability
that c holds from u’s perspective

Now, by considering the risk/probability that each data consumer will share
or disclose the information he learned about the private database, we can com-
pute, as shown in the following theorem, the probability that an adversary will
learn all the information that has been released to data consumers through their
performed queries.

Theorem 2 (disclosure risk-based differential privacy). Given a set of
data consumers U of a private database D and pu representing the risk/probability
that the data consumers u ∈ U will share or disclose the information they are go-
ing to learn about D to other parties. If we suppose that for each data consumer
ui ∈ U is attributed a privacy budget εui , then, in the worst case, the following
condition holds:

Pr

[
∃A,∀U ′ ⊆ U : PrA[M(D) ∈ S] = exp(

∑
u∈U ′

εu)PrA[M(D′) ∈ S]

]
≤
∏
u∈U ′

pu

(3)

where D and D’ are adjacent databases, and A is an adversary.

In our solution, we suppose that the data owner (or the data collector) will
specify for each total privacy budget value (i.e., the value of disclosed informa-
tion), the value of the maximum acceptable disclosure risk/probability level.

Definition 3 (α-risky privacy budget distribution). Given a set of data
consumers U = {u1, · · · , un} having each a disclosure probability pui . We say
that the privacy budget distribution function dist-budget: U → R is α-risky iff
the following condition hold:

∀U ′ ⊆ U :
∏
u∈U ′

pu ≤ α

(∑
u∈U ′

dist-budget(u)

)
(4)

where α : R→ R.
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The function α is going to be used by the data owner to indicate for each
value of disclosed information, the value of the maximum acceptable disclosure
risk/probability level. An example of the function definition could be:

α(ε∗) =

{
1 if ε∗ ≤ ε
10−

ε∗−ε
ε if ε∗ > ε

}
where ε is the quantity of information that an adversary can learn when the
disclosure risk is 1 (i,e,. the quantity of information that an adversary can learn
in the classic differential privacy model). In this example, the data owner simply
requires that the acceptable disclosure probability should decrease exponentially
in the amount of increased disclosed information.

Note that Theorem 2 and Definition 3 are directly related through the right
side of the inequality (3) and the left side of the inequality (4). Informally speak-
ing, given a set of data consumers U ′ and a privacy budget distribution function
dist-budget that assigns for each data consumer a privacy budget to use for
querying the private database, dist-budget is alpha risky if the probability that
there exists an adversary A that knows the informations that has been released
to data consumers in U ′ through their performed queries is less or equal to the
maximum acceptable disclosure risk level defined by the data owner.

We now define our method for optimal privacy budget assignment among
data consumers. This method will be based mainly on the data owner’s trade-
off between data consumers’ disclosure probability/risks and the quantity of
disclosed information, which we presented in Definition 3.

to meet the optimality in privacy budget sharing, we should maximize to
the best the privacy budget to be attributed to each data consumer while en-
suring the satisfaction of the data owner’s trade-off between data consumers’
disclosure probability/risks and the quantity of disclosed information. This can
be formalized as follows.

Definition 4. Given a set of data consumers U = {u1, · · · , un} having each a
disclosure probability pui and a function α : R→ R that specifies for each value
of disclosed information, the value of the acceptable disclosure probability. An
optimal privacy budget assignment is the solution to the following maximization
problem:

Maximize
u∈U

dist-budget(u)

s.t. ∀u ∈ U : εu > 0

∀U ′ ⊆ U :
∏
u∈U ′

pu ≤ α

(∑
u∈U

dist-budget(u)

)
∀u1, u2 ∈ U : (pu1

− pu2
)× (εu1

− εu2
) ≤ 0

(5)

In the previous definition, the first condition states that all data consumers of
the private database should have a privacy budget greater than zero. The second
condition ensures that given a set of data consumers in U , the probability that all
of them will disclose the information they learn is less or equal to the disclosure
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threshold specified by the function α. Finally, the last condition ensures that if a
data consumer u1 has a disclosure probability greater (respectively, lesser) than
the disclosure probability of a data consumer u2, then the privacy budget to be
attributed to u1 should be lesser or equal (respectively, greater or equal) than
the privacy budget to be attributed to u2.

5 Conclusion

This paper proposes a solution for the problem of privacy budget distribution
in adaptive multi-data consumers differential privacy use cases. The solution
extends the differential privacy model classic model to include data consumers
information disclosure risk, and define a maximization objective function that
ensures an optimal privacy budget distribution among data consumers. As a
future work, we aim to define a method for computing the information disclosure
risk of a data consumer and to implement and evaluate our approach on a real
use case.

References

1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy,
accuracy, and consistency too: a holistic solution to contingency table release. In:
Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. pp. 273–282. ACM (2007)

2. Cormode, G., Procopiuc, M., Srivastava, D., Tran, T.T.: Differentially private pub-
lication of sparse data. arXiv preprint arXiv:1103.0825 (2011)

3. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: TCC. vol. 3876, pp. 265–284. Springer (2006)

4. Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to sensitivity
in private data analysis. In: Theory of Cryptography, Third Theory of Cryptogra-
phy Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings.
pp. 265–284 (2006), http://dx.doi.org/10.1007/11681878_14

5. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science 9(3–4), 211–407 (2014)

6. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings
of the forty-second ACM symposium on Theory of computing. pp. 705–714. ACM
(2010)

7. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially
private histograms through consistency. Proceedings of the VLDB Endowment
3(1-2), 1021–1032 (2010)

8. Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear count-
ing queries under differential privacy. In: Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp.
123–134. ACM (2010)

9. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. pp. 19–30. ACM (2009)



Lecture Notes in Computer Science: Authors’ Instructions 7

10. Roy, I., Setty, S.T., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and
privacy for mapreduce. In: NSDI. vol. 10, pp. 297–312 (2010)

11. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE
Transactions on Knowledge and Data Engineering 23(8), 1200–1214 (2011)

12. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private
histogram publication. The VLDB Journal 22(6), 797–822 (2013)

Appendix A Proof of Theorem 2

Proof. Since each data consumer u ∈ U has a privacy budget εu, so in the worst
case, we have:

∀u ∈ U ′ : Pru[M(D) ∈ S] = eεuPru[M(D′) ∈ S] (6)

Let us suppose that each data consumer ui ∈ U ′ performed the set of queries
Qui = {qui1 , · · · , quini} over the database D using a differential private mechanism
M and got the set of outputs Yui = {yui1 , · · · , yuini}. Then, in the worst case, the
information learned by the data consumer ui can be quantified as following:

LD→D
′

ui (Yui) = ln

(
Pr[M(qui1 (D)) = yui1 ∧ · · · ∧M(quini(D)) = yuini ]

Pr[M(qui1 (D′)) = yui1 ∧ · · · ∧M(quini(D
′)) = yuini ]

)
= εui

(7)

Let us now suppose that all data consumers in U ′ disclose the set of queries
they performed and the set of responses they got to an adversary A. Then, in
the worst case, the information that can be learned by the adversary A can be
quantified as following:

LD→D
′

ui

( ⋃
u∈U ′

Yu

)
= ln

( ∏
ui∈U

(∏ni
j=1 Pr[M(quij (D)) = yuij ]∏ni
j=1 Pr[M(quij (D′)) = yuij ]

))
(8)

=
∑
ui∈U ′

LD→D
′

ui (Yui)

=
∑
ui∈U ′

εui

Now, the probability that there exists an adversary who knows the set of queries
performed by all data consumers in U ′ and the set of responses to those queries

(an adversary how learns
∑

ui∈U ′
εui information about individual in the database

D) can be computed as following:

Pr

 ∧
ui∈U ′

 ni∧
j=1

discloseui(quij , y
ui
j )

 =
∏
ui∈U

Pr

 ni∧
j=1

discloseui(quij , y
ui
j )


(9)

=
∏
ui∈U

pui
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where discloseu(q, y) means the disclosure of the query q and its response y by
the data consumer u.

Finally, based on equations 6, 8 and 9 we can deduce equation 3.


